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The novel pentaketide-derived epoxyquinol dimers epoxyquinols
A (1) and B @)* (Figure 1) have drawn significant attention due to
their highly oxygenated, heptacyclic structures and potent anti-
angiogenic activity. In a previous Communicatinye reported
enantioselective syntheses band2 by [4 + 2] dimerization of
2H-pyran monomers. Recently, a closely related natural product,
RKB-3564 D @, Figure 1, relative and absolute stereochemistries
unassigned) was coisolated withand2 and also shown to be an
angiogenesis inhibitcr Herein, we report the total synthesis ®f
employing an alkoxysilanol protecting group to favor {4 4]
relative to [4+ 2] dimerization of2H-pyran monomers.

The 3,8-dioxatricyclo[4.2.2%%dodeca-9,11-diene structure of
dimer 3 suggested [4+ 4] cycloadditio® of two identicat 2H-
pyrans4 or 4' as a retrosynthetic disconnection (Figure 1). A survey
of the literature revealed that [4 4] cycloadditions have been
generally performed using photochemistry, forcing thermal condi-
tions32 and transition metal catalysidn our initial studies'c we
observed <3% of 3 produced withl and 2 (>60%) in the
dimerization of4/4'. However, extensive efforts did not signifi-
cantly improve the yield of3 due to competitive [4+ 2]
dimerization of4/4'.6 Even with careful optimization of the solvént
(14:1 CHCI;:MeOH, rt, 50 h) the yield oB could only be raised
to 6—10%. With the small amount & obtained, we determined
its stereochemistry by X-ray crystallography (Figure 2). The
absolute configuration of natural RKB-3564 D was determined by
comparison of optical rotatiors.

Inspection of the structures @ and 3 reveals that both com-
pounds may be derived from dimerization of two identi2él-
pyrans4 and that a 1,3 carbon shift (retention of stereochemistry)
may transforn? into 3. However, we found that a 1,3 shift failed
to occur by UV irradiation o using a 450 W Hanovia lamp (Pyrex
filter). Interestingly, photolysis of the derived dialkoxysilabe
(Scheme 1) unexpectedly afforded Bgsymmetric photocycload-
dition product 68 which was confirmed by X-ray analysis.
Attempted desilylation o6 (EtN-3HF? TBAF/AcOH) provided
2 which indicates that the bicyclo[2.2.0]hexane is prone to retro [2
+ 2] cycloaddition to afford the more stable structe

Since we were unable to rearrange dir@¢o 3, we next inves-
tigated modifications o2H-pyrans4/4'. X-ray structures ofL—3”
show that the secondary alcohol(s)lodind?2 are generally located
in sterically encumbered positions. In contrast, the two hydroxyl
groups in3 are significantly less hindered. We reasoned that
installation of a bulky protecting group on the secondary alcohol
of 4/4' may block the [4+ 2] proces® and favor [4+ 4]
dimerization. We thus preparetH-pyran silyl etherd from diol
7,%¢ which was found to be resistant to both§42] and [4+ 4]
dimerization under either thermal or photochemical conditions
(Scheme 2). Similarly, relate@H-pyran monomers, including
methyl ether {0) and acetate 1(1), did not undergo [4+ 4]
dimerizationt®
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Figure 1. Dimeric epoxyquinol natural products.

Figure 2. X-ray crystal structure analysis of RKB-3564 B)(
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These experiments reinforced the possibility of blockingH4
2] dimerization by protection of secondary alcohol of #ié-pyran
and the apparent requirement of an alcohol to facilitate the #4
process. Further experiments showed that dimerizatiord/4f
occurred during silica gel chromatography (slow elution using 2:1
hexane/EtOAc), leading to improved production3{15%) and
suggesting that [4+ 4] dimerization may be promoted by sur-
face silanols on silica. Combining these considerations, we pre-
pared alkoxysilanol2/12 (Scheme 3) fron#/4'.11 To our delight,
12/12 underwent smooth cycloaddition to afford{44] dimer13
with no evidence of [4+ 2] cycloaddition. After desilylation3
was obtained in improved overall yield (30% frofn We believe
that this is the first use of a dialkylsilanol protecting group to direct
the course of a reactio.
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Scheme 3. Alkoxysilanol-Facilitated Synthesis of 3
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may be favored to afford [4 4] dimer13. In contrast, dimerization
of unprotected monomed to afford 2 may be facilitated by
hydrogen bonding through7a (R = H).19

—Si / L
Pr,SiCly " \? neat, 30h O/SI-?/H Ho-Sho S In summary, we have developed a strategy for the synthesis of
aia o O o ol °° ——3 the epoxyquinol dimer RKB-3564 D employing an alkoxysilanol
76%'fmm7Me Z X I = I 40 % from 12 protecting group to redirect the inherently favored {4 2]
12112 13 dimerization of 2H-pyran monomers to a [4- 4] manifold.
Preliminary mechanistic studies suggest that the+[4] dimer-
Scheme 4 ization may occur through a stepwise, ionic process. Further studies
to examine the scope of the dimerization process and further
OH A 1 ¢ applications are currently under investigation.
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Scheme 5. RKB-3564 D Derivatives
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